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THE ROLE OF BASE PATHS IN NIELSEN FIXED
POINT THEORY

Seoung Ho Lee*

Abstract. The Reidemeister orbit set plays a crucial role in the
Nielsen type theory of periodic orbits, much as the Reidemeister set
does in Nielsen fixed point theory. Extending our work on Reide-
meister orbit sets, we improve our theorem for formulae for Nielsen
type essential orbit numbers.

1. Introduction

Nielsen fixed point theory has been extended to a Nielsen type the-
ory of periodic orbits [4, Section III.3]. The computation of the Nielsen
number often relies on the knowledge of the Reidemeister set. Ferrario
[2] made an algebraic study of the Reidemeister set in relation to an
invariant normal subgroup. He obtained addition formulae for Reide-
meister numbers, and applied them to the Nielsen number of fibre pre-
serving maps. Recently we studied the Reidemeister orbit set of a group
endomorphism in relation to an invariant normal subgroup, obtained
addition formulae for Reidemeister orbit numbers, and as application,
found addition formulae for Nielsen type essential orbit numbers of fibre
preserving maps [5]. Our aim in this paper is to improve the proof of
the main theorem 2.4 in [5]. We prove it without conditions on the base
path.

We consider a fibre preserving map f : E → E of a Hurewicz fibration
p : E → B of compact connected ANR’s. It induces a map f̄ : B → B.
Let K be the kernel of the homomorphism j∗ : π1(Fb) → π1(E) induced
by the inclusion of a fiber. Denote by EO(n)(f) the number of essential
n-orbit classes of f , and by EO

(m)
K the number of mod K essential
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orbit classes on a fibre. Under suitable conditions, we have an addition
formula of the form

EO(n)(f) =
∑

b∈ξ

EO
(m)
K (hb),

where the summation runs over a set ξ of essential n-orbit representatives
for f̄ , d is the depth of the essential f̄ -orbit class containing b, m = n/d,
and hb : Fb → Fb is a variant of fd|Fb.

For the basics of Nielsen fixed point theory, the reader is referred to
[1] and [4].

2. The role of base paths

Let X be a compact connected ANR(absolute neighborhood retract).
Let f : X → X be a map. We denote by Fix(f) = {x ∈ X | f(x) = x}
the fixed point set of f . Two fixed points x, y ∈ Fix(f) are Nielsen
related if there is a path λ from x to y such that f(λ) is homotopic to
λ by a homotopy keeping the end points fixed. This relation divides
Fix(f) into a finite number of fixed point classes of f . The set of fixed
point classes will be denoted by FP(f).

Let n > 0 be a given integer. Then f acts on the set FP(fn) of
n-periodic point classes of f by Ffn 7→ f(Ffn). In [5], the f -orbit of
a class Ffn is called an n-orbit class, denoted by F(n)

f . The set of n-

orbit classes is denoted by O(n)(f). The length of the orbit F(n)
f is the

smallest integer ` > 0 such that Ffn = f `(Ffn). The set of essential n-
orbit classes will be denoted by EO(n)(f). The essential n-orbit number
EO(n)(f) is the cardinality of the set EO(n)(f).

Let x be the base point in X, and take a path w from x to f(x) as the
base path for f . The induced endomorphism fw∗ : π1(X,x) → π1(X, x)
is defined by

fw
∗ (〈γ〉) := 〈wf(γ)w−1〉 for any loop γ at x.

If w is the constant path, fw∗ will be denoted by fx∗ . For n > 1,
we have (fn)wn∗ = (fw∗ )n if the base path for fn is taken to be wn :=
wf(w) · · · fn−1(w). For the sake of convenience, denote the induced
endomorphism fw∗ by ϕ, and π1(X, x) := πX .

Notation. Suppose G is a group. For α ∈ G, let τα : G → G denote
the conjugation defined by τα(β) = αβα−1.
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Given ϕ : πX → πX , we have the Reidemeister left action of πX on
πX , given by

β · α = βαϕ(β−1).

The Reidemeister classes are the orbits of this action, and the set of
Reidemeister classes is denoted by R(ϕ). The Reidemeister number of
f is given by R(f) = ]R(ϕ), where ] denotes the cardinality.

Let n > 0 be a given integer. Then ϕ acts on the Reidemeister set
R(ϕn) by [α]ϕn

ϕ7→ [ϕ(α)]ϕn . In [5], the ϕ-orbit of a Reidemeister class
[α]ϕn is called the Reidemeister n-orbit of ϕ, and denoted by [α](n)

ϕ . The
Reidemeister n-orbit set of ϕ is the set of all such ϕ-orbits, denoted by
RO(n)(ϕ). The length of the orbit [α](n)

ϕ is the smallest integer ` > 0
such that [α]ϕn = [ϕ`(α)]ϕn .

For m | n, we have a commutative diagram of pointed sets

R(ϕm)
ιm,n−→ R(ϕn)

↓ ↓
RO(m)(ϕ)

ιm,n−→ RO(n)(ϕ),

where the vertical maps are projections, and the horizontal maps are
induced by the level-change function ιm,n : πX → πX defined by

ιm,n(β) := βϕm(β)ϕ2m(β) · · ·ϕn−m(β).

Recall that an ϕ-orbit [α](n)
ϕ ∈ RO(n)(ϕ) is reducible to level h, if there

exists a [β](h)
ϕ ∈ RO(h)(ϕ) such that ιh,n([β](h)

ϕ ) = [α](n)
ϕ . The lowest

level d = d([α](n)
ϕ ) to which [α](n)

ϕ reduces is its depth. A Reidemeister
orbit [α](n)

ϕ ∈ RO(n)(ϕ) is said to have the full depth property if its
depth equals its length, i.e., d = ` (see [5]).

It is well known that every fixed point class of f is assigned a Rei-
demeister class in R(ϕ), called its coordinate. We get an injection
ρ : FP(f) ↪→ R(ϕ), defined by ρ(Af ) := [〈cf(c−1)w−1〉]ϕ for any path
c from x0 to a point x in Af . Thus we also get an injection ρ : O(n)(f) ↪→
RO(n)(ϕ), defined by ρ(A(n)

f ) := [〈cfn(c−1)fn−1(w−1) · · · f(w−1)w−1〉](n)
ϕ

for any path c from x0 to a point x in A(n)
f . If ` | n and an `-orbit class

B(`)
f lies inside an n-orbit class A(n)

f , then their coordinates are related
by

ρ(A(n)
f ) = ι`,n(ρ(B(`)

f )),
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hence ρ(A(n)
f ) is reducible to level `. The depth of an n-orbit class A(n)

f

is defined to be the depth of its coordinate ρ(A(n)
f ).

We will need the mod K version of the Nielsen theory. If K is a
ϕ-invariant normal subgroup of πX , then we denote the induced homo-
morphism on πX/K by ϕK . We then have the set RO(n)(ϕK) of Reide-
meister ϕK-orbits, and the mod K essential n-orbit number EO

(n)
K (f),

that is the cardinality of the set EO(n)
K (f) of mod K essential n-orbit

classes. We also have an injection ρK : O(n)
K (f) ↪→RO(n)(ϕK).

The following proposition is the main tool of this paper.

Proposition 2.1. For the base path wn at x as above, for any path
µ from x to f(x), let µn = µf(µ) · · · fn−1(µ). Then there is an index
preserving bijection

rµn,wn : RO(n)(fµ
∗ ) → RO(n)(fw

∗ )

given by rµn,wn([〈γ〉](n)

fµ
∗

) = [〈γµnw−1
n 〉](n)

fw∗
. Furthermore, we have rµn,wn ◦

ρ = ρ.

Proof. See [3] and [7].

The following lemma is the main tool in [5].

Lemma 2.2. ([5] Reducing Lemma 2.2.) Suppose X is a compact
connected ANR, and f : X → X is a map. Suppose x ∈ Fix(fn)
lies in an n-orbit class A(n)

f of depth d. Then there exists a homotopy

H = {ht : X → X}0≤t≤1 connecting f = h0 and g = h1, such that

(1) x ∈ Fix(gd).
(2) The loop Hn(x) = {hn

t (x)}0≤t≤1 is contractible in X.
(3) H equals f outside of an arbitrarily given neighborhood of the

point fd−1(x).

Now without conditions of base paths, we improve the theorem 2.4
in [5].

In this paper we will assume that all of our fibrations F ↪→ E → B
(with projection p : E → B) are Hurewicz fibrations with typical fibre,
E and B path-connected (see [7]). We say that f : E → E is a fibre
preserving map provided there is a well-defined map f̄ : B → B with
pf = f̄p. When such a map exists it is unique, and when B is a path
connected locally path connected space it is enough that for all b ∈ B
the restriction of f takes the fibre Fb := p−1(b) to another fibre. For
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any b ∈ Fix(f̄n), we will denote the restricted map on Fb by fn
b . For

x ∈ E let j : Fp(x) → E be the inclusion and K denote the kernel of the
homomorphism j∗ : π1(Fp(x), x) → π1(E, x).

In [5] we call a subset ξ ⊂ Fix(f̄n) a set of essential n-orbit represen-
tatives for f̄ if ξ = {b1, b2, . . . , bk} contains exactly one point from each
essential n-orbit class F(n)

f̄
∈ EO(n)(f̄).

For each b ∈ ξ, let d be the depth of the essential f̄ -orbit class F(n)

f̄

containing b. Now b and f̄d(b) are in the same fixed point class of f̄n

(because the depth is always a multiple of the length, of the f̄ -orbit
class F(n)

f̄
), but not necessarily f̄d(b) = b. By the Reducing Lemma,

there exists a homotopy H̄ = {h̄t : B → B}t∈I connecting f̄ = h̄0 to
some ḡ = h̄1 such that b ∈ Fix(ḡd), and the n-orbit class of f̄ containing
b corresponds to the n-orbit class of ḡ containing b because the trace
Hn(x) is contractible loop. We can do this for all b ∈ ξ simultaneously,
because the H̄ above only changes f̄ in a small neighborhood of the
f̄ -orbit of b.

By the homotopy lifting property of the fibration p, the homotopy
H̄ in B lifts to a fibre preserving homotopy H = {ht : E → E}t∈I

connecting f = h0 to some g = h1.

Theorem 2.3. Suppose p : E → B is a fibration of compact con-
nected ANR’s with path-connected fibres, and f : E → E is a fibre
preserving map. Let ξ = {b1, b2, . . . , bk} be a set of essential n-orbit

representatives for f̄ . If Fix((f̄n)bi∗ ) = {1} for every bi ∈ ξ, then we have

EO(n)(f) =
∑

bi∈ξ

EO
(mi)
K (gdi

bi
),

where g is the fibre preserving map from the Reducing Lemma. K is
the kernel of the homomorphism j∗ : π1(Fbi) → π1(E) induced by the
inclusion of the fibre, di is the depth of the n-orbit class of f̄ containing
bi, and mi = n/di.

Note that when bi ∈ Fix(f̄di), the term EO
(mi)
K (gdi

bi
) in the summation

can be replaced by EO
(mi)
K (fdi

bi
), because we don’t need to use Reducing

Lemma at bi.

Proof. By homotopy invariance we have EO(n)(f) = EO(n)(g). So
without loss of generality (by rewriting g as f) we may assume that
bi ∈ Fix(f̄di) and g is the same as f .
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For each bi ∈ ξ, let F(n)

f̄ ,i
be the essential n-orbit class containing it.

Clearly EO(n)(f) =
⋃

i p
−1
E (F(n)

f̄ ,i
). So we only need to show |p−1

E (F(n)

f̄ ,i
)|

= EO
(mi)
K (fdi

bi
) when Fix((f̄n)bi∗ ) = {1}. In the following proof we shall

drop the subscript i from our notation.
For each b = p(x) ∈ ξ, since π2(B) is trivial, we have the short exact

sequence of groups

1 → π1(Fb, x)/K
j∗→ π1(E, x)

p∗→ π1(B, b) → 1.

Suppose b ∈ ξ is in the essential n-periodic point class Ff̄n which in

turn is in the essential n-orbit class F(n)

f̄
with depth d and m := n/d.

Since d is the depth of F(n)

f̄
, Ff̄n alone constitutes an essential m-orbit

class F(m)

f̄d ⊂ F(n)

f̄
.

Let w be the base path for f from x to f(x) in E, and p(w) = w̄ is the
base path for f̄ from b to f̄(b) in B. Then w̄n = w̄f̄(w̄) · · · f̄n−1(w̄) is the
base path for f̄n from b to f̄n(b) in B, and so [〈w̄−1

n 〉](n)

f̄ w̄∗
is the coordinate

of F(n)

f̄
. We can consider the base path w̄n = w̄df̄

d(w̄d) · · · (f̄d)m−1(w̄d)

for f̄n as the base path for (f̄d)m, then [〈w̄−1
n 〉](m)

f̄
w̄d∗

is the coordinate of

F(m)

f̄d .

Since the path connected fibre Fb is fd-invariant, we can choose the
base path µ for fd

b in Fb from x to fd
b (x) = fd(x). Then b = p(µ) is

the constant path at b. By Proposition 2.1 we have an index preserving
bijection

rb,w̄n : (RO(m)((f̄d)b
∗), [1](m)

(f̄d)b∗
) → (RO(m)((f̄d)w̄d∗ ), [〈w̄−1

n 〉](m)

(f̄d)
w̄d∗

)

and ρ̄ = r−1
b,w̄n

◦ ρ̄.

Let KF(m)

fd
b

:= KF ∈ EO(m)
K (fd

b ) be the mod K essential orbit class

containing x. Then by Proposition 2.3 in [5] we have a commutative
diagram of exact sequences in the category of pointed sets:

(EO(m)
K (fd

b ), KF)
jE→ (EO(m)(fd),F

(m)

fd )
pE→ (EO(m)(f̄d),F

(m)

f̄d )

ρK ↓ ρ ↓ ρ̄ ↓
(RO(m)((fd

b )µ
∗/K), ρ(KF))

jx
∗→ (RO(m)((fd)µ

∗ ), ρ(F
(m)

fd ))
p∗→ (RO(m)((f̄d)b

∗), [1])

where the notation [1] stands for [1](m)

(f̄d)b∗
.
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When Fix(((f̄d)b∗)m) = Fix((f̄n)b∗) = {1}, [5, 1.6] tells us jx∗ is injec-
tive, and so jE is injective. Since p∗ and σ preserve essentiality, we have
a commutative diagram of exact sequences in the category of pointed
sets:

1 → (EO(m)
K (fd

b ), KF
(m)

fd
b

)
jE→ (EO(m)(fd),F

(m)

fd )
pE→ (EO(m)(f̄d),F

(m)

f̄d )

σ ↓ ↓ σ̄

(EO(n)(f),F
(n)
f )

pE→ (EO(n)(f̄),F
(n)

f̄
).

When Fix(τ〈w̄−1
n 〉(f̄

w̄∗ )n) = Fix((f̄n)b∗) = {1}, [5, 1.12] and [5, 1.7] tell

us σ restricts to a bijection from p−1
E (F(m)

f̄d ) to p−1
E (F(n)

f̄
). We get the

desired equality |p−1
E (F(n)

f̄
)| = EO

(m)
K (fd

b ).
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